G.C.s WORKSHEET #2 - PATTERSON 1. Determine the arc length. a) Central Angle of 30", radius of 3 cm (, = e 39 tzrr(3) ?tc,c - = g1f ct* 36o b) CentralAngle of 90", radius of 8 cm J r g (Zff(t) ?60 s lltlo,[ cn- ?,6o e) CentralAngle o1?L ,o4., radius of 15 cm J=6I- 3 { (rs) c) Central Angle o172", radius of 10 cm s= 72- (eir6ro) ' ,co \ = lt'-lq 1F e,.. 36o s = 4?r ar,,. (E) f) CentralAngte o1 4! ,o4., radius of 10 cm 5=6n s 3$. 1ro) -r\ .r) _ (E) s = 3'Il-c.rr (r) s= 3ficnr (E) s = lO'iTcrtr (E) ,= I T.r,.^(r) 2. After class Angela says, "l didn't understand how he got the formula for arc length, s = €)r. Did you understand it?" Explain to Angela where the formula comes from. Afac LeF\fiH 15 ft % oF -THe ctecunf Wc€ . s= fu,lrrfr; =elr '7-t !'{ TTTAL errcrI vALur lr{ trADIAFlS 3. Determine the arc length of the following. d) CentralAngle of I rad., radius of 12 cm r= fr{r4 g = e6 = fce) s = ETT eyrr. (e) ,=$!^ct a) d) ,qt*-;'' = Stro) $= 9n "*( ,,,{'g 1 18 cml ."==fl,,U 5- 4. Circle G has a radius of 7 cm. After computing an arc on circle G Nancy finds the arc length to be 14 cm. She exclaims, "The centfq!.angle must be 2 radians." How did she know this? J=Or Ir{ = O (7) I ranu -+ hg c le nqlt I a